x

Chinese quantum computer prototype leads world in computational capabilities

By You Yi, People’s Daily

A research team led by professors Pan Jianwei and Lu Chaoyang of the University of Science and Technology of China has recently established a quantum computer prototype named “Jiuzhang”, via which up to 76 photons were detected.

The achievement was made through joint efforts of the research team and the Shanghai Institute of Microsystem and Information Technology and the National Parallel Computer Engineering Technology Research Center.

Jiuzhangcanprocess 50 million samples within 200 seconds by Gaussian boson sampling (GBS), a classical simulation algorithm, compared with 600 million years for the current most powerful supercomputer in the world.

The breakthroughmarksthe first time that China has realized a quantum computational advantage,or “quantum supremacy”, which makes the country the second in the world to achieve the feat.

Jiuzhang’s research team published their achievement on Science magazine, one of the world’s top academic journals,on Dec. 4.

“Quantum supremacy”appears when a new quantum computer prototype outperformsthe most powerful classical computers in terms of computing powerin handling a particulartask.

The result also proves that the new quantum computer prototype will possibly outperform traditional computers and more breakthroughs in many other areas in the future.

One of the most important issues in the cutting edge of quantum science is to use quantum devices to solve complex problems and exhibit quantum advantages, noted Peter Zoller, member ofthe U.S. National Academy of Sciences, who is also winner of Wolf Prize in Physics as well as the Dirac Medal.

Zoller believes that Pan’s team has brought to a new level the research on the size, scalability, and the prospect for practical application of quantum systems.

“In the era of big data, thevolume of data created in the world is showing exponential growth and doubling every two years,” said Pan, who added that such an enormous amount of data wouldn’t mean anything unless it is extracted.

At present, the development computer is hindered by its traditional development model,and supercomputers tend to consume large amounts of energy, Pan said, noting that Jiuzhang was designed to improve computing capabilities without consuming more energy.

The research and development of quantum computers have become one of the biggest challenges at the forefront of world science and technology, as well as a focus of global efforts.

In 2019, Google created a 53-qubit quantum computer known as Sycamore, which was much faster in processing a mathematical algorithm than the world’s strongest supercomputer back then. The computer was the first to achieve “quantum supremacy” in the world.

The new quantum computer developed by the Chinese research team beats Sycamore in three aspects—computational speed, environmental suitability and computing power on problems with larger samples, Lu noted.

Sycamore could only outspeed supercomputers in the case of a small amount of samples while Jiuzhangshowed better performance than supercomputers in both small and large amounts of samples.

It’s like Google’s quantum computer could outrun supercomputers in a sprint, but not a marathon; Jiuzhang excels in both sprints and long-distance races, Lu said.

Jiuzhang-based GBS algorithm boasts potential for application in areas such as graph theory, machine learning and quantum chemistry, which are considered as concentrations of research in the future.

Although with strong computing power, Jiuzhang is currently just a “champion in one single area”, according to Pan’s team.

“We hope to develop a general-purpose quantum computer to solve more practical problems such as cryptanalysis, weather forecasting and drug designthrough efforts in the next 15 to 20 years,” Pan added.

A peer reviewer for Science commented that Jiuzhangrepresents a major breakthrough as well as the most advanced experiment.

Experiment on quantum advantages will not reach results easily. It is more about the race between faster classical algorithms and ever-improving quantum computing hardware.

But in the end, quantum parallelism will generate computing power that classical computers cannot match. Pan’s team hopes that its achievement could inspire more efforts in the simulation of classical algorithms.

Hot this week

IGBO ADORATION DAY IS A LAUDABLE PROJECT,  OHANAEZE NDIGBO CHIEFTAIN 

   The President of Ohanaeze Ndigbo, Abia State Chapter,...

Minister Doro Hosts Plateau Northern Zone Stakeholders Meeting to Promote Unity, APC Registration

The Minister of Humanitarian Affairs and Poverty Reduction, Dr....

Gyang Dung Gyang Condemns Killing of Miners in Kuru, Calls for Urgent Security Action

Gyang Dung Gyang, a Peoples Democratic Party (PDP) aspirant...

Investigation absolves Aondoakaa in Utan Bran compensation case

An independent investigation by Nigerian Concord Newspaper has found...

Naira Strengthens to N1,385/$ as Equities Gain N232bn

The naira appreciated further at the official foreign exchange...

FCT Schools, Primary Health Centres Remain Closed as Workers’ Strike Enters Ninth Day

Public primary schools and primary healthcare centres across the...

Meter Costs Trigger DisCos–FG Dispute Over Electricity Tariffs

A disagreement has emerged between the Federal Government and...

Anthony Joshua Speaks After Fatal Crash That Killed Two Friends

British-Nigerian boxer Anthony Joshua has spoken publicly for the...

National Youth Alliance Inaugurates State Chairmen, Launches Digital Portal

The National Youth Alliance (NYA) has inaugurated chairmen for...

Nigeria Records Gains Against Lymphatic Filariasis as Free Hydrocele Surgeries Expand

Nigeria is making progress in tackling lymphatic filariasis, a...

EFCC Arraigns Firm and Six Individuals Over Alleged €100m Fraud in Abuja

The Economic and Financial Crimes Commission (EFCC) has arraigned...

EFCC Arraigns Man in Maiduguri Over Alleged N20m Criminal Misappropriation

The Economic and Financial Crimes Commission (EFCC) has arraigned...

Related Articles

Popular Categories

spot_imgspot_img